

GM crops in the pipeline: implications for asynchronous approvals in the EU

Emilio Rodríguez-Cerezo

CEN-ENEA Workshop, March 18-19, 2010, Brussels.

IPTS – Institute for Prospective Technological Studies

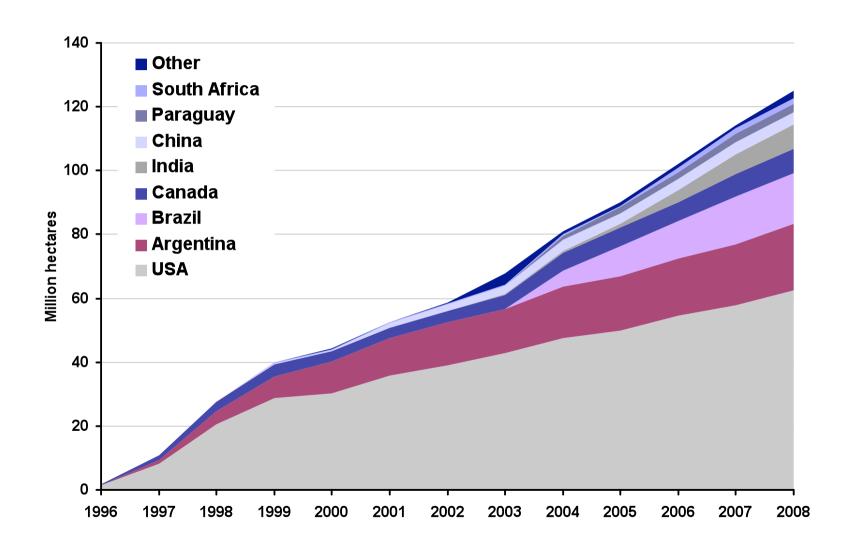
Agriculture and Life Sciences in the Economy Unit, Seville, Spain

http://ipts.jrc.ec.europa.eu/

Main GM crops 2009: share of global production and total area

Soybean	HT	77 %	69 M ha
Cotton	Bt/HT	49 %	16 M ha
Maize	HT/Bt	26 %	41 M ha
Canola	HT	21 %	6 M ha

Sugar-beet



Where are GM crops grown

XIII. ICABR Conference, 18-20 June 2009, Ravello, Italy

Pipeline of GM crops asynchronous approval, slide 3

- Last year GM crops were cultivated by 12 million farmers in 25 countries on 125 million hectares
- These crops are grown for feed & fibre
- They are also important for international trade
- Authorisation of new GM crops different across countries (scope, timing, recognition)
- → Low-level presence (LLP) of GM material possible that is unapproved in importing country

- Given that there is a zero-tolerance policy to LLP
 - → Trade disruptions and product withdrawals have occurred
- → Economic impact for EU agro-food chain documented (and studies on future impacts underway)

Need to understand evolution of future sources of LLP (technological pipeline)

- Three sources of LLP can be distinguished:
 - Asynchronous approval (AA): an exporter country has already authorised a GMO for cultivation while trade partners are in the process
 - Isolated foreign approval (IFA): a country has authorised a GMO for cultivation, with no intention to seek approval in other areas of the world
 - Research events: cultivation of a GMO in field trials, but due to accidental admixture traces end up in the commercial crop supply

Examples of LLP incidents due to <u>Asynchronous</u> Approvals

- 2006 traces of Herculex maize were found in shipments from the USA to the EU
- 2007 another LLP situation seemed likely for "RoundupReady 2" (RR2) soybeans

Approach

XIII. ICABR Conference, 18-20 June 2009, Ravello, Italy

- Did the approval of soybean by EU solve the issue for soy trade?
 - Maybe for the short term...but
- Cross-presence: unauthorised GM maize detected in soybean imports to Europe in 2009
- Therefore: need to consider also development of new GMOs in crops other than soybean
- The number of new GM crops will increase substantially, due to new developments and stacking of old GMOs

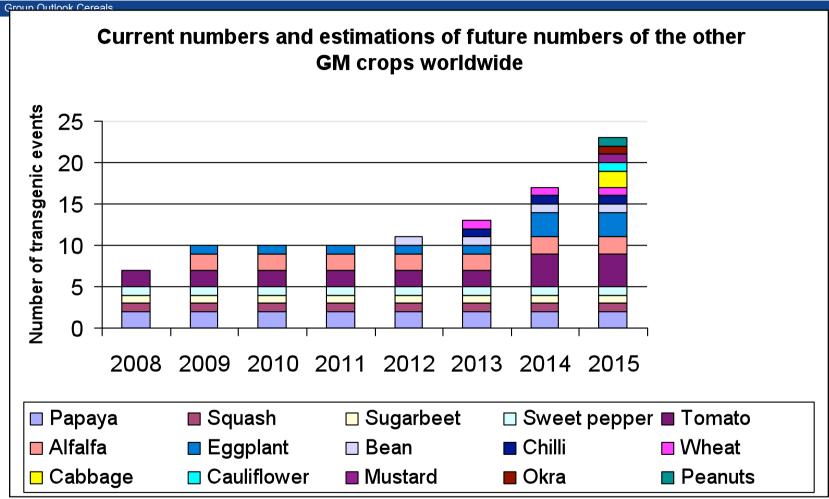
 Past LLP incidents due to <u>isolated foreign</u> approvals and/or research events

- In 2006 <u>rice</u> trade with the USA disrupted (LLRice)
- In 2009 trade with Canada disrupted after detection of GM flax Triffid line (Univ Saskatchwan)
- Several incidents with GM rice events from China

• The pipeline of future GM crops

XIII. ICABR Conference, 18-20 June 2009, Ravello, Italy

Pipeline of GM crops asynchronous approval, slide 11


Current and future events, by crop

	Commercial in 2008	Commercial pipeline	Regulatory pipeline	Advanced dvpmt	Total by 2015
Soybeans	1	2	4	10	17
Maize	9	3	5	7	24
Rapeseed	4	0	1	5	10
Cotton	12	1	5	9	27
Rice	0	1	4	10	15
Potatoes	0	0	3	5	8
Other	7	0	2	14	23
All crops	33	7	24	61	124

Other crops

Source:

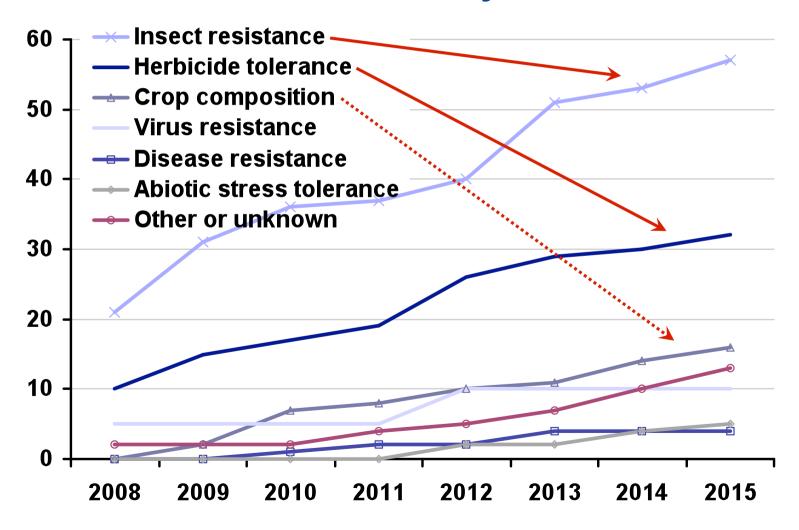
Stein, A.J. and E. Rodríguez-Cerezo (2009). The global pipeline of new GM crops: introduction to the database. *JRC Technical Note* **EUR 23810 EN**. Luxembourg: European Communities, (2010) Current numbers and estimations of future numbers of GM crops worldwide. Nature Biotechnology 28, 23-25 (Supplementary Data)

http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=2199

Results Major Crops

XIII. ICABR Conference, 18-20 June 2009, Ravello, Italy

Pipeline of GM crops asynchronous approval, slide 13


Current and future events, by region of origin

	Commercial in 2008	Commercial pipeline	Regulatory pipeline	Advanced dvpmt	Total by 2015
USA & Europe	24	7	10	26	67
Asia	9	0	11	34	54
Latin America	0	0	2	1	3

Decisions by players in Asia may matter in future

XIII. ICABR Conference, 18-20 June 2009, Ravello, Italy


Current and future events, by trait

XIII. ICABR Conference, 18-20 June 2009, Ravello, Italy

Theoretical combinations of GM maize stacks

GM rice cultivation perspectives until 2015

- No commercial cultivation yet but incidents have occurred with escaped varieties escaped from research labs and breeding trials (USA, China)
- China (Bt63, Bt KMD1, IR CpTi, HT Bar68-1, Bt 63, Xa21)
- Iran (Bt B827)
- India (3-4 Bt events)
- Indonesia (2-3 Bt events)
- Pakistan (Bt events)
- Philippines (GR1, GR2)

Conclusions

- Asynchronous approvals: streamlined approval timing for major crops is not likely enough to solve the LLP
- Active pipeline and cross-LLP presence between crops complicates the picture
- Stacking will also be demanding resources
- Many "local" events are in the pipelines (particularly for "new" for new crops such as rice, potatoes, vegetables, wheat, sugarcane)
- Depending on decisions by developers of these varieties, also <u>isolated foreign approvals (and research events) will</u> continue to be an issue

Conclusions

Therefore

- •Future problems due to LLP cannot be excluded
- •Impacts under study and to be discussed in this meeting include

Impacts on prices and availability of EU traded feed

EU Feedstuff and crushing sectors

EU livestock sector

EU Food production sector

Further reading:

Stein A.J., Rodríguez-Cerezo E. (2009). The global pipeline of new GM crops: implications of asynchronous approval for international trade.

Luxemburg: European Communities. http://ipts.jrc.ec.europa.eu/publications/

Technical Report EUR 23486 EN.

The global pipeline of new GM crops

Implications of asynchronous approval for international trade

Alexander J. Stein and Emilio Rodríguez-Cerezo

EUR XXXXX EN - 2009

Thank you very much for your attention!

