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Figure 2: Premixed flame past a cube: a) Temperature isosurface (1500K) coloured by axial 

velocity Uz and Temperature slice; b) x-z plane of instantaneous Uz with streamlines. 

A cut-cell based Cartesian grid method for three-dimensional compressible flows and not-

uniform staggered grid is presented for the first time. The robustness of IVM method is tested 

with high Reynolds numbers LES without adopting multi-grid techniques. A LES of premixed 

bluff body flame is also presented to demonstrate the capability of the method to strictly 

conserve quantities as mass overcoming the drawbaks of classical IB methods. 
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We propose a multiscale SABR model to describe the dynamics of forward prices/rates. This 

model consists of a system of three stochastic differential equations whose independent variable 

is time and whose dependent variables are the forward prices/rates and two stochastic 

volatilities varying on two different time scales. Let R and R
+
 be respectively the sets of real 

and of positive real numbers, let t be a real variable that denotes time and xt, v1,t, v2,t, t 0, be 

the stochastic processes that describe respectively the forward prices/rates and the two 

stochastic volatilities associated to the forward prices/rates. The dynamics of the stochastic 

processes xt, v1,t, v2,t, t 0, is defined by the following system of stochastic differential 

equations:  
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where · denotes the expected value of · and the quantities 0,1, 0,2   (-1,1) are constants 

known as correlation coefficients. The autocorrelation coefficients of the previous stochastic 

differentials are equal to one. When the model is multi-scale (i.e. when 0 1 2) the 

meaning of the assumptions (4), (5), (6), (7), (8), (9) is that the stochastic differentials on the 

right hand side of (1), (2), (3) associated to the two (long and short) time scales are 

independent. When the condition 0 1 2 holds it is likely to observe abrupt changes in the 

forward rates/prices variable.  

The equations (1), (2), (3) are equipped with the initial conditions:  

)10(,x~x 00  

)11(,v~v 1,01,0  

)12(,v~v 2,02,0  

 

where 0x~ , i,0v~ , i = 1,2, are random variables that we assume to be concentrated in a point with 

probability one. For simplicity we identify the random variables 0x~ , i,0v~ , i = 1,2, with the 

points where they are concentrated. We assume  i,0v~ >0, i = 1,2.  

The stochastic differential equations (1), (2), (3), the initial conditions (10), (11), (12), the 

assumptions on the correlation coefficients (4), (5), (6), (7), (8), (9) and the conditions on the 

coefficients , i 0, i = 1,2, define the multiscale SABR model. Note that equations (2), (3) are 

a two factor volatility model. This model generalizes the SABR model introduced in 2002 by 

Hagan et al. [1]  that is defined by the following system of stochastic differential equations:  
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where   [0,1] and 0. The coefficients  and  of (13), (14) are known respectively as -

volatility and as volatility of volatility. Moreover Wt, Qt, t 0, are standard Wiener processes 

such that W0 = Q0 = 0, dWt, dQt, t 0, are their stochastic differentials and we have:  
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 dt ,  t 0, 
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where   (-1,1) is a constant called correlation coefficient. The equations (13), (14) are 

equipped with the initial conditions:  

)16(,x~x 00  

)17(,v~v 00  

where  0x~ , 0v~  are random variables that we assume to be concentrated in a point with 

probability one and that, for simplicity, we identify with the points where they are concentrated. 

Moreover we assume that 0v~  0. Note that equation (14) is a one factor volatility model.  

Several empirical studies have shown that two factors volatility models describe the behaviour 

of financial prices more accurately than one factor volatility models (see for example [2], [3] 

and the references therein). These studies motivate the introduction of multiscale SABR 

models. We study the normal and lognormal SABR and multiscale SABR models. The normal 

and lognormal SABR models correspond respectively to the choices  = 0 and  = 1 in equation 

(1) (multiscale SABR) and in equation (13) (SABR). Under the hypotheses (4), (5), (6), (7), (8), 

(9) on the correlation coefficients in [4] closed form and “easy to use” formulae for the 
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transition probability density functions of the normal and lognormal multiscale SABR models 

and for the prices of the corresponding European put and call options are deduced. The 

formulae for the transition probability density functions are three dimensional integrals of 

explicit integrands. However due to the special form of the integrands these three dimensional 

integrals can be evaluated using a standard quadrature rule at the computational cost of a two 

dimensional integral. 

The computational cost can be further decreased using ad hoc quadrature rules. In fact the 

integrals are Fourier integrals of integrands containing the product of two copies of a function 

evaluated in two different points. This function is a one dimensional integral of an explicitly 

known integrand. Once chosen a grid in the conjugate variable of the Fourier transform the 

integrals that define the two copies of the function mentioned above can be evaluated in 

parallel. That is combining the FFT algorithm with the special features of the integrands ad hoc 

quadrature rules to evaluate the transition probability density function and the corresponding 

option prices for the normal and lognormal multiscale models have been developed. These 

quadrature rules allow a fully parallelizable and scalable evaluation of the models. 

The method used to study the multiscale SABR models is applied to the study of the normal 

and lognormal SABR models [4]. For these models some new closed form formulae for the 

transition probability density functions of their state variables and for the prices of the European 

call and put options are deduced. The transition probability density functions of the normal and 

lognormal SABR models are expressed as one dimensional integrals of explicit integrands.  

In the normal SABR model case the formula for the transition probability density function 

deduced in [4] is an elementary formula that can be used instead of formula (120) of [5]. This 

last formula is the one commonly used in mathematical finance and is based on the Mc Kean 

formula [1], [5] for the heat kernel of the Poincaré plane. In the lognormal SABR model case 

the formula for the transition probability density function deduced in [4] is a special case of a 

new formula that gives the transition probability density function of the Hull and White 

stochastic volatility model [6] in presence of (possibly nonzero) correlation between the 

stochastic differentials appearing on the right hand side of the prices/rates and volatility 

stochastic differential equations. The formulae for the transition probability density functions 

deduced in [4] are based on some recent results of Yakubovic [7] on the heat kernel of the 

Lebedev Kontorovich Transform. A calibration problem for the normal and lognormal SABR 

and multiscale SABR models is studied. The calibration problem considered uses as data a set 

of option prices observed at a given time and is formulated as a constrained nonlinear least 

squares problem [4].  

Let us show some numerical results obtained solving this calibration problem using real data. 

We restrict our attention to the lognormal SABR and multiscale SABR models.  

We consider the daily observed values of the U.S.A. five-Year Interest Rate Swap expressed in 

percent and the corresponding futures prices having maturity September 30th, 2011 and the 

prices of the corresponding European call and put options with expiry date September 19th, 

2011 and strike prices Ki = 106+0.5*(i-1), i = 1,2,...,18. The rates, the futures prices and the 

option prices are observed in the period going from September 14th, 2010, to July 20th, 2011. 

The futures and option prices are daily prices and are the closing price of the day. The strike 

prices Ki, i = 1,2,...,18, of the options are expressed in hundreds of base points.  

Using these option prices as data we calibrate the lognormal models every day for 

approximately two months, that is we calibrate the lognormal models in the period going from 

September 14th, 2010 to November 15th, 2010. In this period there are significant oscillations 

in the value of the futures prices. In fact, for example, on October 12th, 2010 the futures price is 

112.093 and on November 15th, 2010 the futures price goes down to 107.875. In the first part 

of the period (September 14th, 2010- October 14th, 2010) the oscillations of the futures price 
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are small and in the second part (October 14th, 2010- November 15th, 2010) in particular 

around the end of October 2010 there is a fall of the futures price. 

The parameter values obtained in the calibration of the lognormal models are shown in figure 1. 

We can see from figure 1 that the values of the parameters remain substantially unchanged in 

the two months period except for the values of the parameters  and 2 that show a significant 

change at the end of October 2010 and during the first fifteen days of November 2010. 

Moreover we use the parameter values obtained with the calibration of the lognormal SABR 

and lognormal multiscale SABR models to forecast the option prices one day in the future 

during the two months period mentioned above [4].   

 

Figure 1: Parameter values versus time to maturity obtained calibrating the lognormal SABR and 

multiscale SABR models every day for two months in the period going from September 14th, 2010 to 

November 15th, 2010 (interest rate swap experiment). 

 

 

 
 
Figure 2: Relative errors on the forecast prices one day in the future of call and put options obtained 

using lognormal SABR model (a) and lognormal multiscale SABR model (b) versus time to maturity 

expressed in days. The period considered goes from September 14th, 2010, to November 15th, 2010 

(interest rate swap experiment).  
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The forecast option prices are obtained using as value of the underlying asset the value 

observed the day of the forecast. Finally figure 2 shows the relative errors on the forecast option 

prices one day ahead of the current day obtained using the parameter values shown in figure 1.  

We can see that the lognormal multiscale SABR model gives more accurate approximations 

than the lognormal SABR model in particular the average and the worst case of the relative 

errors are respectively 0.0037, 0.028 for the lognormal SABR model and 0.0025, 0.025 for the 

multiscale SABR model. That is the lognormal multiscale SABR model improves substantially 

the lognormal SABR model. This is particularly evident in the forecasting of at the money 

option prices.  

The work of the authors and of their coauthors in mathematical finance is illustrated in the 

website: http://www.econ.univpm.it/recchioni/finance .  
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